中教数据库 > 重庆邮电大学学报(自然科学版) > 文章详情

移动边缘网络中深度学习任务卸载方案

更新时间:2023-05-28

【摘要】为了缓解网络带宽的压力、降低网络延迟,克服移动设备资源匮乏等问题,推动深度学习应用在移动终端的部署,提出一个基于移动边缘计算的深度学习任务卸载方案。基于深度神经网络专用加速芯片Eyeriss的架构,对深度学习任务的计算功耗进行建模,提出了一个基于混合?1/?2范数诱导的三阶段组稀疏波束成形(group sparse beamforming, GSBF)框架,通过对计算任务优先级的精心设计,尽可能地删除基站端冗余的计算任务,实现对整体网络功耗(包括发送功率损耗和计算功率损耗)的优化。针对该框架,提出了一个加速优化方案。仿真实验表明,在该场景下,所提出的框架在优化整体网络功耗方面具有显著优势,而加速算法可以进一步提升框架的性能。

【关键词】

369 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号